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This paper is a brief review of some of the developments in the mathematical 
foundations of quantum mechanics that have taken place since the publication 
in 1932 of John von Neumann's celebrated treatise Mathematische Grundlagen 
der Quantenmechanik. 

1. INTRODUCTION 

It is a great honor for me to be able to address this first conference of  
the International Quantum Structures Association (IQSA). I would like to 
thank Prof. Beltrametti and the organizers of  the conference for giving me 
this opportunity. The number and diversity of  the scientific talks given 
during the past few days are an indication that the mathematical structure 
of quantum theory is still a very active and fruitful subject of study. I feel 
that the only way I can contribute to this conference is to give a general 
survey of some of the themes and results in this area. I also wish to take 
this opportunity to mention that it was through the lectures of Prof. G. W. 
Mackey at Seattle in 1961 on the mathematical foundations of  quantum 
mechanics that I first began to appreciate the beauty and depth of the 
subject, and after 30 years it still retains its very great fascination for me. 

It is of  course not possible for me to give a thorough discussion of the 
main developments of this subject in a single talk; a full course spread over 
a year or two would be required for such a project. So what I propose to 
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do is to give my impressionistic view of this beautiful subject that lies 
between mathematics and physics. 

It is exactly 60 years since the publication in 1932 of von Neumann's 
great book, Mathematische Grundlagen der Quantenmeehanik. This book, 
which, in my opinion, is a landmark of twentieth century science, made it 
possible for the first time to speak about the new quantum mechanics in a 
mathematically blemishless manner. The ideas introduced in it provided the 
background for all subsequent developments in the mathematical aspects of 
quantum theory. During these years a number of new ideas and themes 
have been discovered, as a result of which the subject has been raised to an 
entirely new level: ideas of Weyl, Yang, Mills, and others regarding gauge 
theories and their relationship to the differential geometry of fiber bundles; 
ideas of Connes, Drinfel'd, Jimbo, Manin, and others concerning the 
theory of noncommutative spaces and their quantum groups of automor- 
phisms; the work of Polyakov, Manin, Witten, and others, which has 
revealed profound links between field theory and complex algebraic and 
differential geometry; as well as the work of Weyl, Wigner, Mackey, and 
many others which had led to a profound understanding of the role of 
symmetry in quantum theory. For obvious reasons I shall confine myself 
only to a brief discussion of just a few of these, although even this is a very 
vast. and difficult undertaking; in particular, I shall say nothing about 
questions of symmetry. I am also well aware that much of what I am going 
to say will be quite familiar to this audience. Nevertheless I hope you will 
get some pleasure out of this. It is like listening one more time to a piece 
of great music which never tires us no matter how often we have heard it 
before (even when the conductor has many obvious limitations). 

2. THE RISE OF QUANTUM MECHANICS 

The discovery and development of quantum mechanics during the 
early decades of this century is rightly regarded as a monumental achieve- 
ment in the history of science and scientific thought. The ideas of Bohr, 
Heisenberg, Dirac, Schr6dinger, Pauli, Born, and others helped create a 
new mechanics that differed in profound and revolutionary ways from 
classical mechanics, and which succeeded in giving a logically consistent 
description of atomic systems that had great predictive power. The novelty 
of its structure and the strangeness of its rules of physical interpretation 
immediately attracted the attention of mathematicians and mathematical 
physicists. One of the most interesting aspects of this new mechanics was 
that from the beginning it made contact with the new mathematics of the 
twentieth century that was simultaneously being developed. Up to that time 
all physical theories were firmly grounded in the classical mathematics of 
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the nineteenth century, especially classical analysis and geometry; however, 
it was very clear from the beginning that quantum mechanics had to be 
formulated in the mathematical framework of linear spaces and linear 
transformations between them, and, when it became essential to inquire 
into the symmetry properties of quantum mechanical systems, of the theory 
of groups and their representations. 

The new mechanics had many remarkable features, but none more so 
than the following: 

Noncommutat ive  algebra. The physical observables were represented 
as (the real) elements of a noncommutative algebra (over the complex 
number field and admitting an involution). 

Classical limit. The kinematical and dynamical equations contained a 
parameter h, Planck's constant; in the limit when h went to 0, these 
equations became the equations giving a classical description of the system 
in question. 

Statistical interpretation. The principle, fundamental in all of classical 
physics, that in a given state all physical observables should possess sharply 
defined values, was abandoned and replaced by the weaker one that only 
the probability distributions of the observables could be calculated, even in 
principle. 

Causality. Causality, which appeared to be lost because of the above 
statistical view of nature, was restored by saying that the quantum state, 
which was now identified with the totality of all statistical distributions of 
all the observables at a given instant of time, evolved in a causal and 
deterministic manner so that the statistics of observables changed in a 
causal manner, as long as no measurements were made on the system. But 
causality was lost when measurements were made; the dynamical evolution 
suffered a discontinuity whose result was not predictable in advance. 

The second of these, namely the idea of using the smallness of Planck's 
constant h in comparing the new mechanics with the old one, was already 
a prominent feature of the Bohr (1913) theory of "stationary orbits" as the 
principle that for large quantum numbers the quantum orbits may be 
understood in classical terms, and was the forerunner of his great corre- 
spondence principle. Bohr of course was well aware that his stationary 
orbits were anomolous objects; indeed, they stood in complete contradic- 
tion to classical electrodynamics by their very definition, namely that they 
were the orbits in which an accelerating electron was not emitting or 
absorbing any radiation. Nevertheless, his deep understanding of the 
classical theory of electrons had led him to the conviction that only a 
radical break from it would have a chance of explaining the stability of 
atoms. His revolutionary ideas were still not sufficient and offered only a 
partial synthesis; but they highlighted the need for a more fundamental way 



1818 Varadarajan 

of treating the atomic systems. He himself was a great force during this 
intermediate period from 1912 to 1925 in the search for the new mechanics, 
and it was his relentless insistence on a logically consistent description of 
atomic theory that ultimately paved the way for the epoch-making ideas of 
Heisenberg and the path to full understanding. 

At the outset, following the appearance of the papers of Heisenberg 
(1925) and those of his collaborators (Born and Jordan, 1925; Born et al., 
1926) and of Dirac (1926), only elementary systems were treated, such as 
the hydrogen atom (Pauli, 1926). 1'* But as the new principles became better 
understood, it became clear how they could be modified to include spin, to 
treat many-electron atoms, and even to satisfy the principle of special 
relativity. 

3. MATHEMATICAL FOUNDATIONS OF QUANTUM MECHANICS 

However, it was not until the appearance of von Neumann's book and 
papers that one could say that a proper and fully adequate mathematical 
foundation was available for the new theory to build on. He first of all gave 
an axiomatic treatment of (separable) Hilbert spaces, which up to that time 
were always just spaces of square summable functions. He then developed 
(independently of M. H. Stone, who had obtained essentially the same 
results) the spectral theory of unbounded operators, discovering in the 
process the precise class of operators which admitted spectral resolutions, 
thereby creating a far-reaching extension of Hilbert's spectral theory to 
unbounded operators. The foundational significance of this work resides of 
course in the fact that in the correspondence between physical observables 
and self-adjoint operators, the spectral resolution of the operator is the key 
ingredient, since it is from the resolution alone that one can calculate the 
statistics of the physical observable in various states. As long as only 
bounded observables are involved, it is obvious that one could dispense 
with operators and work with matrices, but, as soon as unbounded 
observables entered the picture, the matrix point of view became ambigu- 
ous and hopelessly inadequate, since the matrices could determine neither 
the operators nor their all-important spectral resolutions. This point is of  
essential importance, since the commutation rules of Heisenberg cannot be 
satisfied by bounded operators. 2 

The novel and revolutionary nature of the new mechanics brought in 
its wake many difficult problems of physical interpretation, 3 and von 
Neumann made a penetrating analysis of some of these questions in his 

*Due to the length of some of the notes, all numbered footnotes are collected in a section at 
the end of this paper. 
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book, These problems have not been completely resolved; indeed, some of 
them are still being argued about, even today, even in this conference. 

4. OUTLOOK 

If one looks beyond these questions of interpretation and philosophy, 
and examine the success of quantum mechanics in explaining the micro- 
scopic world and predicting its behavior, one has to admit that it has been 
spectacularly successful. It was only when attempts were made to extend 
the scope of its framework to include quantum electrodynamics, i.e., a 
relativistic quantum theory of the electromagnetic field, that difficulties 
were encountered. These difficulties, some of which stem at least partially 
from the many unresolved problems of electromagnetic theory even at the 
classical level, have been eliminated for the moment by the concept of 
renormalization. As this is not part of the foundations of the structure 
erected already, one cannot say that everyone has been persuaded to accept 
the quantum theory of electromagnetic fields or its generalizations in their 
present form as definitive. 4 Nevertheless the theory of quantized fields as it 
exists at present is a structure of great beauty and heuristic content, with 
profound applicability to the real world as well as to the world of 
mathematics. One might therefore say that the theory of elementary 
particles and their interactions is in the form of a great unfinished sym- 
phony; one has a good understanding of many parts of it and has a 
conviction that a large part of reality has been discovered, but one has also 
the feeling that some pieces are still missing, perhaps new themes, or new 
ways of understanding old themes. 

In this prolonged hiatus the attempts to overcome the difficulties of 
formulating a coherent and unified theory of elementary particles have led 
the physicists very deeply into present-day mathematics. A new generation 
of mathematicians and physicists has arisen, at home in the themes and 
languages of both disciplines, and their efforts to construct very diverse 
models of field theory and dynamics of infinite-dimensional systems have 
utilized to the utmost the resources of modern algebra and algebraic 
geometry. The concepts and results that have come out of their programs 
are already of great interest even from the purely mathematical standpoint 
in such areas as noncommutative geometry, holomorphic vector bundles, 
string theory and its relation to the theory of moduli, conformal field theory, 
and so on. 5 It is therefore very clear that an intriguing world of ideas that 
unites mathematics and physics at their deepest levels is being created at this 
time, and while it is impossible to predict either the success of these new 
attempts or the ultimate shape of a new view of nature that they may lead 
to, it is equally impossible not to feel a sense of real excitement. 
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5. ALGEBRAS OF OBSERVABLES A N D  G E O M E T R I E S  
OF P R O P O S I T I O N S  

Heisenberg and Dirac had already taken, explicitly and unambigu- 
ously, the great leap forward in asserting that in quantum theory the 
observables form a noncommutative algebra. But it was von Neumann who 
introduced the (partially ordered and orthocomplemented) set of experi- 
mentally verifiable proposit ions--the logic of quantum mechanics--as an 
object of equally fundamental significance. His point of view was that the 

quan tum logic could in fact be taken as the basic Object; its structure as a 
projective geometry contrasted sharply with the Boolean algebra occurring 
in classical mechanics, and it led to the algebra of observables as the 
algebraic object that coordinatized this geometry. He was the first person to 
consider geometries more general than the classical projective geometries, 
of possibly infinite dimension and even continuous in the sense there are no 
points = minimal elements (or "pointless geometries," as he is supposed to 
have often joked), and prove coordinatization theorems about such ge- 
ometries. In my opinion these theorems and their successors, like Piron's 
theorem on standard logics, are among the most remarkable results in the 
foundations of the subject because they show that any nontrivial model has 
to look very much like the standard model. 6 For a general geometry the 
theorem of coordinates in the simplest situation constructs a vector space 
over a division ring whose linear subspaces reconstruct the given geometry; 
in more complicated cases the vector space disappears but we have an 
algebra whose lattice of principal left (or right) ideals is isomorphic to the 
geometry. The vector space reappears, however, if we consider the repre- 
sentations of this algebra! The algebra itself acquires some positivity 
properties coming from the probabalistic interpretation. States are viewed 
as linear forms of positive type on the algebra--the value of the linear 
form at an element of the algebra is the expectation value of the corre- 
sponding observable in the state represented by the linear form. Von 
Neumann's theory of operator algebras may thus be seen as an effort to 
construct and study analytically infinite-dimensional algebras of operators 
on a Hilbert space that are not standard, while his work on geometries may 
be viewed as exploring the same theme geometrically. 7 

I have passed over a little too quickly the relationship between states 
and representations. Given a complex algebra with an involution and a 
state on it, it was discovered in the early 1950s by many people (Gel'fan& 
Naimark, Godement, Segal, etc.) that there is a canonically associated 
Hilbert space, a *-representation of the algebra, and a unit vector in the 
Hilbert space such that the state is a multiple of the vector state defined by 
this unit vector. In this way, if one starts with a ,-algebra whose real 
elements represent the physical quantities and introduce the states as the 
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positive linear forms on the algebra, the Hilbert spaces and the vector 
states are just around the corner. This algebraic approach to quantum 
mechanics was systematically explored by Segal. 8 

This entire circle of ideas--geometries with or without points but 
typically orthocomplemented, their coordinatizing algebras acquiring an 
involutive structure originating from the orthocomplementation, the notion 
of states as positive linear forms that give rise to representations in Hilbert 
spaces--is a very beautiful and tightly knit one and we owe it to von 
Neumann that it is nowadays placed (casually, as it were) as the corner- 
stone of the mathematical foundations of the theory. This line of thought 
expressed in the chain 

g e o m e t r y  ~ a lgebra  ~ c o o r d i n a t i z a t i o n  --+ s ta t e  ~ represen ta t ion  

informs his entire work and gives it a tremendous coherence. 
This is not the place to enter into a discussion of how one can give a 

very satisfying treatment of most aspects of quantum mechanics starting 
from these principles (see, e.g., Dirac, 1958; Weyl, 1950). I do want, 
however, to mention briefly two things. The first concerns the probabilistic 
aspects of the foundations, about which I have said very little so far. Von 
Neumann had already realized that the calculus of traces on his operator 
algebras was the counterpart to the theory of integrals on Boolean algebras 
and hence may be viewed as examples of n o n c o m m u t a t i v e  in tegra t ion .  The 
operator algebraic impact of these ideas was immediate, but the proba- 
bilists waited for several decades before taking up this theme. I am thinking 
of the subject that is nowadays called quantum probability and studied by 
Accardi, Hudson, Meyer, Parthasarathy, Streater, and others. 9 

The second point is that I have implicitly assumed that the division 
ring that occurs in the coordinatization of the geometry of propositions is 
the complex number field. Strictly speaking, this is an additional assump- 
tion, as the division ring is an important invariant of the geometry. The 
standard model makes this assumption, but there are other possibilities, t~ 

6. GLEASON'S THEOREM AND ITS GENERALIZATIONS 

Belonging to this same circle of ideas but very different in its motiva- 
tion and scope is the collection of results consisting of Gleason's theorem 
and its generalizations. This line of thought was first introduced by Mackey 
when he began his foundational analysis of quantum theory in the late 
1950s. His basic idea was that in asserting that all the statistical aspects of 
a quantum system were contained in the expectation functional which was 
supposed to be a linear function on the algebra of observables, von 
Neumann had perhaps assumed too much, since the additivity of the 
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expectation for noncommuting operators was, strictly speaking, not easily 
understandable even at a heuristic level. The remedy is of course to 
introduce the physical states in whose definition the additivity is required 
only for commuting operators. Von Neumann's work on traces in operator 
algebras has already shown that the additivity of the trace for noncommut- 
ing operators was true but a technically difficult thing to establish. The 
obvious question now is whether a physical state is necessarily a state in the 
yon Neumann sense, i.e., whether a physical state is additive even for 
noncommuting operators. Mackey formulated this as the statement that all 
probability measures on the standard logic are yon Neumann states and are 
thus determined in the usual manner by uniquely defined statistical opera- 
tors (namely, operators U which are positive and have trace 1, the so-called 
density matrices). This was proved by Gleason under the caveat that the 
underlying Hitbert space has dimension at least 3.11 Gleason's theorem is 
therefore at the heart of the fundamental development of the subject and it 
is not surprising that people have tried to extend it to other logics. It is my 
understanding that this has now been established for all logics arising from 
von Neumann algebras ~2 (with appropriate restrictions of course). 

Time does not permit me to discuss the questions of physical interpre- 
tation that have attracted enormous attention ever since the birth of 
quantum mechanics. I do, however, wish to point out that the results of von 
Neumann, Mackey, Gleason, and their successors have pretty much closed 
the door for the discovery of any nontrivial situation violating the canonical 
interpretations except in dimension two. 13 Of course it is also in dimension 
two that one encounters nonclassical geometries: the non-Desarguesian 
geometries, which are different from projective planes over division rings. 
Any theory of exceptional models, namely models in which accepted rules 
of definition and interpretation are not valid, must, I feel, start from these 
nonstandard geometries and the nonassociative structures related to them. 

7. QUANTIZATION AS DEFORMATION 

I now come to the second remarkable feature of quantum mechanics, 
namely the idea that although it is very difficult in its structure from 
classical mechanics, it should have classical mechanics as its limiting form 
when h, Planck's constant, goes to 0. Clearly this is a requirement that is 
not at all easy to formulate in mathematical terms, since the two theories 
take place in entirely different settings. However, things are not as bad as 
they seem and the idea of quantization contains the link between the two 
theories. 

As everyone knows, quantization is a process that provides the mech- 
anism to associate to a given classical system a quantum system that 
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corresponds to it or quantizes it. For a classical system with finitely many 
degrees of freedom the dynamics takes place in the phase space R 2N whose 
coordinates are the q~, q2 . . . .  , qN, P~,P2 . . . .  , PN which are the positions 
and momenta; for the quantized system the action is in the Hilbert space 
L2(R N) of square summable functions of the classical coordinates 
qL , q2 . . . . .  qN ; the classical Hamiltonian 

H(Pl , P2 . . . . .  PN, ql , q2 . . . . .  qN ) 

is then replaced by the same expression which represents the operator in 
the Hilbert space L2(R u) obtained by interpreting qj as the operator of 
multiplication by qj and & as the operator -ihO/Oqj. This is at best an 
ambiguous prescription, since, even for polynomial H, the operator is not 
uniquely determined, due to the noncommutivity of the p's with the q's. 
Thus there is no unique way to quantize a classical system, although in very 
simple cases there is generally little doubt as to how to do the quantization. 
One of the very few general methods that is available is the so-called Weyl 
quantization proposed by Hermann Weyl. ~4 ! do not wish to go into details, 
but simply recall that this is a map W: f ~ - ~ W ( f )  from functions f o n  the 
phase space R 2u to operators on the Hilbert space LZ(RU). Here W ( f )  is 
an integral operator for rapidly decreasing f, and f o r f o f  moderate growth, 
W ( f ) ,  although not an integral operator, is well defined on the Schwartz 
subspace of L2(R u) consisting of the rapidly decreasing functions of the 
q's and leaves it invariant; for instance, if f is a polynomial, W ( f )  
is a differential operator, obtained by replacing p~, qr respectively by 
-ih~/~q,., qr, with the understanding that each monomial in the p's and 
q's is replaced by the average of the corresponding operator monomial 
expressions over all possible orderings. The map W is one to one. 
Weyl's quantization allows one to take, for example, any real polynomial 
classical Hamiltonian and associate to it a quantum Hamiltonian. 

Once the two settings are related to each other in this manner, it is 
possible to formulate the idea that the quantum dynamics tends to the 
classical dynamics as h tends to 0. The most successful of such formulations 
is the one that says that the entire quantum algebra becomes, in the classical 
limit, the classical algebra o f  functions on the phase space, the algebraic 
structure being the one furnished by the Poisson bracket. The simplest way 
to do this is to use the Weyl quantization map to pull back the quantum 
algebra to the classical function algebra and investigate all limiting pro- 
cesses in the latter. Weyl did not do this; this was done by Moyal many 
years later. ~5 Moyal found that if one transfers the Lie algebra structure of 
the space of operators of the Hilbert space to the space of functions on 
phase space by the Weyl quantization map, one obtains not the classical 
Poisson bracket but a deformation o f  it, namely, a bracket structure which 
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tends to the Po&son bracket as h ~ O. This was the first clear-cut result that 
showed that quantum mechanics, represented by the Lie algebra of opera- 
tors on L2(RN), was a deformation of classical mechanics represented by the 
algebra of smooth functions on the phase space of p's and q's, viewed as 
a Lie algebra with respect to Poisson bracket. In this way a connection was 
made with the prophetic idea of Dirac expressed in his very first paper ~6 
that the commutator bracket of operators in quantum mechanics is 
analogous to the classical Poisson bracket. The Poisson structure induced 
by the Weyl quantization map on the space of functions on the classical 
phase space is called the Moyal bracket nowadays. 

In this direction of thought, the obvious question at this stage is to ask 
whether quantum mechanics furnishes the only possible deformation of the 
classical Poisson algebra, namely, C~(R 2N) viewed as a Lie algebra with 
respect to the Poisson bracket. To my knowledge this converse question 
was first studied by Flato, Lichnerowicz, Vey, and their collaborators 
(Sternheimer, Fronsdal, Bayen, Gutt, Lecomte, etc.). It followed from their 
work that the Moyal bracket was, up to certain natural notions of 
equivalence, the only possible deformation of the classical Poisson algebra 
within a wide range of possibilities. They did this by studying general 
deformations of arbitrary Lie algebras and applying the results obtained to 
the classical Poisson algebra. Their methods went much farther and 
clarifred the whole question of quantization of classical systems in very 
general contexts, such as in curved space or in the presence of constraints, 
and showed that under certain very general conditions (vanishing of certain 
cohomology groups) the Moyal deformation is the only mechanism avail- 
able for quantization of a classical system on an arbitrary symplectic 
manifold. 17 

I do not have to overemphasize the foundational significance of these 
deformation-theoretic results. They show that once we build the correspon- 
dence principle as an integral part of the theory and relate it in a natural 
manner to the observable algebra, the mathematical structure of the theory 
is essentially uniquely determined. 

8. NONCOMMUTATIVE GEOMETRY. QUANTUM GROUPS 

The discussion up to this point has led to the view that quantization 
is a deformation of commutative associative algebras changing them to 
noncommutative associative algebras, and that there is an essentially 
unique way of doing this. In the last few years this theme has been revived 
in a big way, and the chain of thought 

commutative algebra ~ deformation ~ noncommutative algebra 
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has been explored in a very systematic manner. The impulses for the new 
progress came from several directions: from Connes, whose profound 
understanding of von Neumann algebras led him to go beyond measure 
theory and topology in the noncommutative domain and take the big step 
into noncommutative differential geometry, 18 from the Leningrad school of 
physicists led by Faddeev, whose work on the quantum inverse problem led 
them to new structures that could be understood as deformations of 
classical Lie groups in the noncommutative realm, ~9 and finally from 
Drinfel'd, Jimbo, Manin, and others, who realized that these deformations 
of the classical Lie groups are really to be understood as quantum groups, z~ 

I think the beginning of the chain of thought that is at the heart of these 
new developments lies in the work in the 1930s due to Stone and Gel'land. 
Stone proved that an abstract Boolean algebra is isomorphic to the Boolean 
algebra of the open and closed subsets of a compact space canonically 
associated to it, while Gel'fand proved that a commutative Banach algebra 
(under certain regularity conditions that are anyway essential) was isomor- 
phic to the algebra of continuous functions on a compact space canonically 
associated to it. This idea was then taken up in algebraic geometry by 
Grothendieck in the late 1950s. Grothendieck's point of view was to insist 
that every commutative ring has to be viewed as the ring of regular functions 
on its spectrum, and that algebraic geometry was the study of spaces built 
locally like these "spectra" (schemes). The total fusion between algebra, 
geometry, and arithmetic brought about by Grothendieck's view led to the 
new revolution in algebraic geometry in which the leading event was the 
monumental work of Grothendieck himself. Thus the geometry of the spaces 
was a total reflection of the ring of functions on them. The idea of Connes, 
Drinfel'd, Jimbo, Manin, and others is to take the Grothendieck approach 
to the next stage by extending it to noncommutative rings, and view them 
as the "functions on a noncommutative space." For example, for any 
complex number h (Planck's constant!) the C-algebra Ch[X, y] with two 
generators x, y, and a single relation 

y x  = e hxy 

is to be thought of as the ring of functions on the quantum plane C], which 
tends to the classical plane when h ~ 0. In this sense therefore quantization 
is a part of the chain of thought 

commutative geometry ~ noncommutative geometry 

This heuristic philosophy suggests also that one should think of the 
quantum groups as groups of automorphisms of the noncommutative 
spaces. This is then a question of studying the deformations of the auto- 
morphism groups of the commutative structures in a systematic manner. 
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Let me now briefly indicate how this is done. As I mentioned above, 
there is in general no distinction in modern algebraic geometry between an 
algebraic variety and the algebra of regular functions on it. If the variety is 
an algebraic group, say G, then we put this in evidence by introducing the 
maps defining multiplication and inverse, 

G x G~G, G ~ G  

which give rise to the dual maps involving the algebra F(G) of all regular 
functions on G, 

A: F(G) ~F(G) |  S: F(G) ~F(G) 

The associativity law, the existence of a unit element, and an inverse can all 
be interpreted via these dual maps and what we get is a Hopf algebra 
structure for F(G). This Hopf  algebra is commutative, but, and this is the 
key point, it is allowed to become noncommutative under deformation. In 
this way we arrive at the new point of view: the Hopf  algebras are to be the 
quantum groups. One can also reach the same level of understanding by 
working in the dual context where the function ring F(G) is replaced by the 
enveloping algebra U(G) of the Lie group G. U(G) is a Hopf algebra which 
is in duality with F(G), and so is cocommutative rather than commutative 
[cocommutativity of U(G) means that A commutes with the flip 
a | b ~ b | a on U(G)| U(G)]. It is reasonable to expect that the Hopf  
algebras (which are now not required to be cocommutative) obtained by 
deforming the U(G) will be in duality with the ones that are obtained by 
deforming the F(G) and so are equally entitled to be viewed as quantum 
groups. The great discovery of Drinfel'd and Jimbo was that while an 
algebraic or a Lie group may be rigid within the category of groups--this  
is the case for the simple Lie groups-- i t  may be deformable in a nontrivial 
manner as a quantum group. More precisely, its function ring (or equiva- 
lently, its enveloping algebra) may have nontrivial deformations in the 
category o f  Hopf algebras (see references in note 20). 

These ideas have attracted a great deal of attention and led to an 
immense amount of activity and results. At the same time questions are 
also being raised as to the relevance of these ideas to the great unresolved 
problems of quantum field theory of elementary particles and their interac- 
tions. I feel that these questions and doubts cannot be answered as yet. The 
most pragmatic as well as philosophically sound stance to take is that these 
new themes have created new mathematical structures that allow new 
models of space-time and their symmetry groups to be built ,  and that it is 
not unreasonable to hope, or at least speculate, that these quantum spaces 
and quantum groups may have a role to play in a theory of space-time 
dynamical processes of elementary particles that is free of divergences. 
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In spite of the very sketchy nature of my treatment, I hope I have 
conveyed to the reader the point of view that noncommutative geometry is 
just another step in the long march leading from commutativity to non- 
commutativity that has been inspired by quantum theory. 

9. GAUGE THEORIES 

I finally turn to an entirely different theme, namely that of gauge 
theory. Gauge theories go back to Hermann Weyl and his attempts starting 
during 1918-1921 to unify gravitation and electromagnetism (Weyl, 1968, 
Vol. II, pp. 29, 55). These attempts failed because of difficulties of interpre- 
tation, 21 but he revived the idea behind them (which he must have found 
too beautiful to abandon) in the late 1920s in a quantum-theoretic con- 
text. 22 It was also at about the same time that Dirac's famous paper on 
magnetic monopoles appeared (Dirac, 1931). The fundamental idea behind 
these papers was that the quantum-theoretic wave function of an electron 
could only be defined locally and one had the freedom of multiplying it by 
a phase factor that was space-time dependent; the path-dependent scale 
factor of Weyl's attempted unification of gravity and electromagnetism had 
now become the path-dependent phase factor characteristic of electromag- 
netism in the quantum domain! The freedom of multiplication by the phase 
factor of course did not change the probability distribution of the location 
of the electron, but led to new possibilities; monopoles, for instance, 
quantization of electric charge, and so on. In mathematical terms, the 
Hilbert space of functions on a manifold was replaced by the Hilbert space 
of sections of a Hermitian line bundle on the manifold. Furthermore, the 
transport of the ambiguous phase factors along paths in space or space- 
time meant that there were connections on this line bundle; the (local) 
components of the 1-forms of these connections were identified with the 
vector potentials of electromagnetism, and their curvature identified with 
the electromagnetic tensor. But the full scope of this circle of ideas was not 
realized until Yang and Mills (1954) discovered their famous equation and 
established its invariance under the full infinite-dimensional group of gauge 
automorphisms of the bundle. Unlike the case of electromagnetism, the 
bundle was now of rank 2 and the potentials were SU(2) connections, and 
the Yang-Mills equationfl 3 a generalization of Maxwell's equation, be- 
came nonlinear. I must mention here that as a consequence of these 
discoveries, the vector potentials have acquired a physical significance of 
their own. The Bohm-Aharonov-Chambers experiment has shown unmis- 
takably that there may be nontrivial phenomena involving the phase of the 
electron even in regions where the electromagnetic field is zero, and the 



1828 Varadarajan 

formal structure of the Yang-Mills equation implies very clearly that it is 
the potentials that satisfy the gauge-invariant equation, not the field 
strengths. 24 It is now universally accepted that elementary particle theories 
have to be gauge theories, the structure group of the bundles in question 
being a reflection of the internal symmetry groups of the particles. The 
interaction between physics and the geometry of fiber bundles generated by 
these ideas has led to profound results in both fields. Time does not allow 
me to go into more detail. 25 

The same line of thought that the wave function is not a function but 
a section of a Hermitian line bundle is also at the basis of the more recent 
ideas on quantizing systems of several identical particles (Finkelstein and 
Rubinstein, 1968; Leinass and Myrheim, 1977; Wilczek, 1990), but with a 
statistics that is different from the usual Fermi or Bose statistics. This is the 
theory of the so-called anyons with their fractional statistics, and the 
corresponding theories of quantized two-dimensional systems have many 
interesting features that make them suitable objects of study. 

10. INTERPRETATION AND MEASUREMENT 

Due to lack of time I have been unable to even touch on the very 
important themes of interpretation and measurement in quantum theory. 
Interest in these aspects has increased tremendously in view of the beautiful 
experiments that have been performed in recent years, such as traps for 
individual particles, neutron interferometer experiments, photons widely 
separated in space-time, and so on. To develop a consistent theory of these 
and other experiments that affect fundamental physics is an important 
problem to which increasing attention is bound to be given in the coming 
years. It appears to me that there is a need for a theory of measurements 
that takes into account aspects involving dynamics as well as covariance 
with respect to the Galilei group or the Poincar6 group. 

11. CONCLUSION 

No one is more aware than myself of the very incomplete nature of the 
discussion I have given here, although I have made an attempt to compen- 
sate by giving a number of references to the literature. However, my only 
aim has been to look along with you at a beautiful but con.stantly changing 
picture and point out some marvelous features that have fascinated me for 
a long time. If I have communicated even a fraction of the excitement that 
I feel in thinking about these ideas, I have fulfilled the task I set out for 
myself. 
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N O T E S  

IAn excellent source for all the above papers is Van der Waerden (1968), which reprints them 
with annotations and historical analysis. Also, for the general historical development of 
quantum mechanics I refer the reader to the monumental volumes of Mehra and Rechen i 
berg (1982). 

2The point is that, up to unitary equivalence, p and q must be represented by the operators 
[in L 2 ( - o o ,  -t-o9)] 

d 
f (q)  ~ - i h  ~ f ( q ) ,  f (q)  ~ qf(q) 

respectively, and these are obviously unbounded operators. This of  course follows from the 
well-known theorem of  Stone and yon Neumann that if we start with the commutation rule 
between p and q expressed in (Weyl's) integrated form, then the above representation (where 
f can be vector-valued) is the only possible one up to unitary isomorphism. 

3The best starting point for reading about the problems of  physical interpretation and their 
resolution is Bohr's (1969) article summarizing the so-called Bohr-Einstein dialogues. After 
the Solvay conference of  1930, Einstein no longer questioned (publicly at least) the 
consistency of  the quantum mechanical interpretation (the so-called Copenhagen interpreta- 
tion); but his attitude toward the completeness of  the quantum mechanical description of 
atomic systems was an entirely different matter. Einstein formulated his objections in a 
dramatic manner in the famous paper with Podolsky and Rosen entitled "Can quantum 
mechanical description of  physical reality be considered complete?" (Einstein et al., 1935). 
These were answered by Bohr (1935) in an equally famous paper with exactly the same title. 
For an absorbing account of  this episode the reader may consult Rosenfeld (1967). Both the 
papers and the relevant excerpt from Rosenfeld's article are reprinted in the monumental 
work edited by Wheeler and Zurek (1983, pp. 138-151). This book contains reprints of  the 
Bohr-Einstein dialogues mentioned above, includes a reprint of Chapters V and VI of yon 
Neumann's book that contain his discussion on the measurement problem, and contains as 
well as a number of articles that relate to the whole question of measurement in quantum 
theory. 

Von Neumann's  name is always attached to two specific but interrelated questions: 
1. Are there "hidden variables" in the quantum mechanical description of  nature which give 

rise to its statistical character? 
2. Is there a way to comprehend under a single unified scheme the two widely different ways 

in which the quantum state changes, namely, the continuous evolution on the one hand 
determined by solving (in principle) the Schr6dinger equation, and the discontinuous 
change that occurs when measurements are made? 

I can do no more than give a brief glimpse of the results of  his beautiful and highly 
original treatment of  these questions and refer the reader to his book (yon Neumann, 1932; 
1955), or at least to the summary I have given in Varadarajan (1985) for more detail. I must 
urge everyone, especially young people, who are starting to get interested in these problems 
to read von Neumann's argumentation, not just for the mathematics, which is very 
interesting but not really difficult at all, but for the coherence and eloquence as well as the 
conciseness with which it is presented. 

Von Neumann's answer was a "no"  to the first question (see Chapter IV of  his book) 
and a "yes" to the second (Chapters V and VI). For the first his starting point was to 
identify the statistical ensembles with the states (or the physical states, see below) of the 
observable algebra. They form a convex set, and if there are any dispersion-free states, they 
must be among the extreme points of  this convex set. He then proved that the extreme 
points are precisely the vector states d ~-* (dcp, cp), and established easily that these were 
never dispersion-free. The second question of course requires a preliminary analysis of  the 
changes in the states brought about by the measuring process. He proved that any 
measurement induces a change of  state which is an endomorphism of the convex set of states 
with the striking property that it decreases the "purity" of the state. More precisely, it can 
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change pure states into mixed states, but can never do the opposite. He realized that this is 
a phenomenon of a thermodynamic nature and showed that the entropy - tr(U log U) of the 
mixed state represented by the statistical operator U always increases when measurements 
are made, and so the changes wrought by the measurement process are irreversible. This 
done, he viewed the measurement process on a system I as the quantum theory of the system 
I + II, where II represents the system composed of the measurement apparatus, the observer, 
etc. In the system I + II the state of course evolves causally according to the Schr6dinger 
equation and the changes are reversible, but the changes of state induced in the system I by 
this evolution are irreversible and thermodynamic. He then showed, using a plausible 
scheme that formalizes the notion of measurement of a quantity, that the discontinuous 
change of state in I is identical with that induced by the causal change of state in I + II. For 
references to some of the many papers and results that have since touched on this question, 
see Wheeler and Zurek (1983); for a systematic exposition of the quantum theory of 
measurement see the recent monograph of Busch et al. (1991). 

4See, for example, Dirac's comments on quantum field theory (Dirac, 1966, p. 2; 1958, pp. 
309-310). 

5For the references to noncommutative geometry see below; for the relationship between the 
theory of holomorphic vector bundles and gauge theories (instantons, etc.) see Manin 
(1988a); for recent discoveries concerning particle physics, string theories, and their mathe- 
matical formalism, see the general survey article of Witten (1987). For further discussions on 
string theory and complex algebraic geometry, see Manin(1987). 

6According to I. Shafaraevich, the "unpronounceable" word "coordinatization" was coined 
by Hermann Weyl. Shafaraevich places this concept at the heart of algebra and uses it as the 
guiding thread in his beautiful book, Algebra (Shafaraevich, 1990). In some sense this 
duality between the algebras and the spaces they coordinatize is also the central theme of my 
talk, and will reappear at various places in what follows. 

The classical projective geometries are described usually in terms of their incidence 
properties. Attention is generally focused on the plane and three-dimensional space and so 
the elements of the geometry are divided into points, lines, and planes, and their incidence 
properties are exactly the same as the ones all of us learn when we first study geometry. But 
this becomes cumbersome in higher dimensions and the best way to proceed is to follow 
Birkhoff's idea that we are dealing with a modular complemented irreducible lattice of finite 
rank; if the rank is -> 4, then it is isomorphic to the lattice of linear subspaces of a vector 
space over a division ring of dimension equal to the rank of the geometry. For a plane 
geometry, i.e., a geometry of rank 3, this is not true unless Desargues' theorem on 
perspective triangles is assumed to be true in the geometry. In their famous paper, "The 
logic of quantum mechanics," Birkhoff and von Neumann (1936) proved that orthocomple- 
mentations in a projective geometry are precisely the ones that arise in a natural manner 
from definite scalar products on the vector space. 

Von Neumann realized that one should try to prove such coordinatization theorems for 
geometries with infinite rank and possibly even without points. His book, Continuous 
Geometry, published posthumously (von Neumann, 1960) contains one of the most far- 
reaching theorems of this type. This theorem asserts that any lattice which is modular, 
complemented, and has rank N -> 4 is isomorphic to the lattice of principal right ideals of 
the ring of N • N matrices from a regular ring (the matrix ring is then also regular), and 
that orthocomplementations in the geometry correspond in a natural manner to definite 
involutions of the ring. Here rank is defined in such a manner that it does not imply the 
existence of points, and regularity is a (necessary) technical condition. For geometries 
without the modular axiom the results are less definitive as far as I am aware. If points are 
assumed to exist and if it is also assumed that the elements contained in a given element 
form a projective geometry, then it was proved by me (Varadarajan, 1985) that the geometry 
is that of all finite-dimensional subspaces of a vector space over a division ring. This theorem 
can then be used as the foundation for obtaining a proof of Piron's beautiful and 
fundamental characterization of standard logics as complete projective logics (Piron, 1964, 
p. 439; see also my book above, pp. 114-122). 
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Another approach to the foundations starting from the measurement algebra was 
worked out in a series of papers in the Proceedings of the National Academy of Sciences USA 
in the 1960s by J. Schwinger. These were then published as a book (Schwinger, 1970). These 
papers are very thought provoking and the mathematician should take a serious look at 
them. Last but not least, the book of Mackey (1963) reexamined the yon Neumann synthesis 
and pushed it forward in a profound manner. 

7One of the great motivations behind yon Neumann's monumental work on operator 
algebras was that they provided many nontrivial examples of logics other than the standard 
ones. He discovered, for instance, that the projections in a factor of type IIi form a 
continuous geometry, and that if we enlarge the factor by including all the operators 
affiliated to the factor, namely those left invariant by all the unitaries that fix all the elements 
of the factor, then we get exactly the regular ring whose right principal ideals correspond to 
the projections in the factor. Through new examples (yon Neumann, 1961, Volume IV) he 
showed that there are continuous geometries that are not obtained from type IIl factors as 
above. 

SOver the years I.E. Segal has been a great force in insisting on an emphasis on fundamental 
issues in quantum mechanics, and anyone who is interested in understanding either the 
foundations or the difficult problems of quantum field theory should study his papers. For 
his treatment of the foundations where the observable algebra plays the central role, see 
Segal (1947). 

9For a survey of noncommutative integration see Connes (1979, 1982). For quantum 
probability see Parathasarathy (1992). This is a very nice introduction to problems and ideas 
regarding what may be described as quantum diffusion. 

~~ quaternionic quantum mechanics the famous paper is of course that of Finkelstein et aL 
(1962). For a discussion of real quantum mechanics see Mackey (1978). This book also 
contains a number of rather profound discussions on fundamental aspects of quantum 
theory that are well worth studying carefully. 

l~Gleason's theorem was proved in Gleason (1957). Its assertion is that i fp  is a map of the 
set of projections of Hilbert space H of dimension ~ 3 into the unit interval [0, 1] which is 
a probability measure in the sense that (i)p(0) = 0, p(I) = 1 and (ii)p is countably additive 
over orthogonal projections, i.e. 

p ( ~ Q j ) = ~ p ( Q / ) ,  Q/Qk=QkQ/=O for j ~ k  

then p is the measure determined by a yon Neumann statistical operator, i.e., there is a 
unique operator U which is positive and has trace 1 such that 

p(R) = tr(RUR) for all projections R in H 

From the point of view of foundations the importance of this result is that it allows one to 
replace "state" by "physical state" in the foundational discussions of von Neumann, thereby 
greatly increasing their scope; for instance, in the question of hidden variables. 

12The question is that of determining all the probability measures on the lattice of projections 
of a yon Neumann algebra of operators in a Hilbert space. This can be formulated as the 
question of first showing that physical states are states, and then representing states in terms 
of traces. This issue appears to be well understood at this time; see the references in 
Varadarajan (1985, pp. 146-147). 

~3The foundational questions are just too many to be treated with any justice in this talk. I 
want to remind the reader that measurement problems involving quantum fields are also 
very important and were first considered by Bohr and Rosenfeld (1933) [reprinted in 
Wheeler and Zurek (1983, p. 479). The reader would also wish to consult for many of these 
questions the book of Beltrametti and Cassinelli (1981), as well as the monograph of Busch 
et al. (1991). 
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14Weyl quantization was introduced in Weyl (1927). It was also discussed in Weyl (1950). It 
is done through the representation theory of the Heisenberg group. For details see 
Varadarajan (1991). 

15The Moyal bracket on the Poisson Lie algebra of functions o fp  and q is defined as follows 
(Moyal, 1949). Let {f, g}h be the bracket depending on the parameter h of two functions 
f, g, with {f, g}o as the Poisson bracket. Then 

(--h2/22)r p2r+ l(f, g) 
{f ,g}h=  Z (2r+1)! 

r ~ O  

where P is the bidifferential operator acting on pairs of functions (u, v) on R 2~v by 

/ ~u ~v Ou ~v \ 
P(. ,v)  r = u,O o / 

For the formal calculation starting from Weyl quantization, which is quite beautiful, see 
Varadarajan (1991). 

~6Dirac's (1926, Section 4) presentation makes it quite clear that the Lie bracket in the 
quantum algebra is the analog of the classical Poisson bracket, and goes over to the Poisson 
bracket in the limit when h-+0. See also the treatment in Dirac (1958, p. 85). 

~7For the theory of deformations of Poisson structures on symplectic manifolds see Flato and 
Sternheimer (1980) and the references given there. The uniqueness of the Moyal deformation 
is a local question. The existence requires some conditions, for example, Vey's 
H3(W, R) = 0, on the symplectie manifold W. It is of course satisfied in the Euclidean case. 

~SA. Connes has several papers and reports where he has given expositions of his views on 
noncommutative geometry as well as references to the work of others, such as Riefel, Effros, 
and so on. The most detailed of these is Connes (1985). See also Witten (1985). 

WFor a detailed review of the origins, history, and development of quantum groups one of the 
best places to start is Drinfel'd (1987). 

2~ Jimbo (1985, 1986a-c). Manin's ideas are given a brilliant exposition in Martin (1988b, 
�9 1991). Manin considers the deformations of F(G) rather than the dual U(G) and constructs 

a general theory of such deformations when G = GL(N). For my own work on deformations 
and quantum groups, see Truini and Varadarajan (1991, 1992, 1993). 

2~For a beautiful account of Weyl's theory and the objections of Einstein see Yang (1986). 

2ZYang (1986) also discusses the quantum version of the gauge theory of the electron that 
Weyl worked out in Weyl (1929) ]reprinted in Weyl (1968, Vol. III, p. 245)]. 

23See also Yang (1983, p. 172). Yang's own very interesting commentary appears on p. 19 of 
Yang (1983). 

24Wu and Yang (1974, 1975). See also Yang (1983, pp. 457, 460), commentary on p. 73). Wu 
and Yang (1975) is especially nice, giving a very comprehensible account of the Bohm- 
Aharonov-Chambers experiment, the interpretation of it through vector bundles, and the 
dictionary between gauge-theoretic concepts and concepts from the theory of fiber bundles. 
It is also interesting to read Yang (1980). There is finally the basic paper of Aharonov and 
Bohm (1959). 

25For a beautiful account of classical gauge theories and the problems and results in the 
theory of holomorphic and Hermitian vector bundles see Atiyah (1979) [reprinted in Atiyah 
(1988)]. See also Manin (1988). 
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